Dynamical Systems (MATH 3410)
Lab 4 - Feigenbaum’s Constant

This lab is based on Experiment 10.4 from the textbook (p.128).

Using the orbit diagram, we have discovered that the quadratic family Q.(z) = 2% + ¢
undergoes a sequence of period-doubling bifurcations as the parameter ¢ decreases. Moreover,
under magnifications the parts of the orbit diagram look very similar. In this lab, we will
show that these period-doubling bifurcations indeed occur at the same rate.

We have found that the quadratic family has the unique critical point g = 0. You will need
to find c-values at which the critical point 0 lies on an attracting cycle of the prime period
2" forn=0,1,...,6.

1. For n = 0 and n = 1, we have derived the formulas for fixed points and 2-cycles of
Q.(x) = 2% + ¢ (check section 6.1 if you forgot), so c-values ¢y and ¢; can we found exactly.
Find them by assuming that zo = 0 is an attracting fixed point (lies on an attracting 2-cycle,
respectively).

2. For n > 2, you will have to find ¢, approximately, accurate to 7 decimal places.
Suggested procedure:

(a) Use program Full_orbit_diagram.nb to get the first approximation of c-values. Change
the value of IterSkip to 0 to show the full orbit behavior, not just asymptotic behavior. Also
change the value of Newlter to 200 to get more accurate picture. You will notice that at
certain values of ¢ the diagram contains only 20 =1, 2! =2, 22 =4, ... 25 = 64 points, and
one of these point must fall precisely on c-axis. Estimate the values of these ¢ by zooming
in, if necessarily. Recall that you can zoom by changing “PlotRange” values in “ListPlot”
command. You must be able to approximate c-values up to 2 — 3 decimal points.

(b) After you get your rough estimate of ¢, use program Orbit.nb to improve the accuracy
of the results up to 7 decimal places. Compute the orbit of the critical point 0 under the
function x? + ¢,, where ¢, is your approximation from the part (a). First, make sure the
orbit looks like a 2™ cycle with one of the values very close to 0. If it does not, go back and
recheck your values from the part (a). I suggest computing a large enough power of 2 (e.g.
256) of points on the orbit, so the value that is close to 0 will be the last one and easy to
notice. Now change the value of ¢, in the definition of the function by small increments to
get the point on the orbit even closer to zero. Proceed until you get at least 7 decimal places
of ¢,.

Notes:

e You may use your own algorithm and/or your own program to estimate c-values.

e [t may take a long time to compute all c-values. You may work in groups and divide
the workload.



e A single mistake in one of the c-values will ruin the final result. I highly recommend
to compare your or your group values with somebody else’s.

3. Record your data in the form of the table: enter n = 0,1,...,6 in the first column and
write down your exact or approximate values ¢y, ¢y, ..., ¢g in the second column.

4. Now compute the ratios of the distances between c-values, i.e.

Co — C1 C1 — Cy Cqy — Ch

fOZ flz c f4:

61_02’ 62—03’ C5—06.

Make sure to keep at least 7 decimal places. Present the values in the form of a table.

5. Do you notice any convergence? Estimate the value of the limit. This number is called
Feigenbaum’s constant.

6. Now do all of the above for the logistic function family F.(z) = cz(1 — z) and its only
critical point zp = 1/2. Note that since we don’t have a formula for a 2-cycle of this family,
you will need to estimate ¢, as well.

Compare the value of the limit of f,,’s with the result for quadratic family from part 5.



