Dynamical Systems (MATH 3410)

Lab 4 - Feigenbaum's Constant

This lab is based on Experiment 10.4 from the textbook (p.128).

Using the orbit diagram, we have discovered that the quadratic family $Q_{c}(x)=x^{2}+c$ undergoes a sequence of period-doubling bifurcations as the parameter c decreases. Moreover, under magnifications the parts of the orbit diagram look very similar. In this lab, we will show that these period-doubling bifurcations indeed occur at the same rate.

We have found that the quadratic family has the unique critical point $x_{0}=0$. You will need to find c-values at which the critical point 0 lies on an attracting cycle of the prime period 2^{n} for $n=0,1, \ldots, 6$.

1. For $n=0$ and $n=1$, we have derived the formulas for fixed points and 2-cycles of $Q_{c}(x)=x^{2}+c$ (check section 6.1 if you forgot), so c-values c_{0} and c_{1} can we found exactly. Find them by assuming that $x_{0}=0$ is an attracting fixed point (lies on an attracting 2-cycle, respectively).
2. For $n \geq 2$, you will have to find c_{n} approximately, accurate to 7 decimal places.

Suggested procedure:
(a) Use program Full_orbit_diagram.nb to get the first approximation of c-values. Change the value of IterSkip to 0 to show the full orbit behavior, not just asymptotic behavior. Also change the value of NewIter to 200 to get more accurate picture. You will notice that at certain values of c the diagram contains only $2^{0}=1,2^{1}=2,2^{2}=4, \ldots, 2^{6}=64$ points, and one of these point must fall precisely on c-axis. Estimate the values of these c by zooming in, if necessarily. Recall that you can zoom by changing "PlotRange" values in "ListPlot" command. You must be able to approximate c-values up to $2-3$ decimal points.
(b) After you get your rough estimate of c_{n}, use program Orbit.nb to improve the accuracy of the results up to 7 decimal places. Compute the orbit of the critical point 0 under the function $x^{2}+c_{n}$, where c_{n} is your approximation from the part (a). First, make sure the orbit looks like a 2^{n} cycle with one of the values very close to 0 . If it does not, go back and recheck your values from the part (a). I suggest computing a large enough power of 2 (e.g. 256) of points on the orbit, so the value that is close to 0 will be the last one and easy to notice. Now change the value of c_{n} in the definition of the function by small increments to get the point on the orbit even closer to zero. Proceed until you get at least 7 decimal places of c_{n}.

Notes:

- You may use your own algorithm and/or your own program to estimate c-values.
- It may take a long time to compute all c-values. You may work in groups and divide the workload.
- A single mistake in one of the c-values will ruin the final result. I highly recommend to compare your or your group values with somebody else's.

3. Record your data in the form of the table: enter $n=0,1, \ldots, 6$ in the first column and write down your exact or approximate values $c_{0}, c_{1}, \ldots, c_{6}$ in the second column.
4. Now compute the ratios of the distances between c-values, i.e.

$$
f_{0}=\frac{c_{0}-c_{1}}{c_{1}-c_{2}}, \quad f_{1}=\frac{c_{1}-c_{2}}{c_{2}-c_{3}}, \ldots, \quad f_{4}=\frac{c_{4}-c_{5}}{c_{5}-c_{6}} .
$$

Make sure to keep at least 7 decimal places. Present the values in the form of a table.
5. Do you notice any convergence? Estimate the value of the limit. This number is called Feigenbaum's constant.
6. Now do all of the above for the logistic function family $F_{c}(x)=c x(1-x)$ and its only critical point $x_{0}=1 / 2$. Note that since we don't have a formula for a 2 -cycle of this family, you will need to estimate c_{1} as well.

Compare the value of the limit of f_{n} 's with the result for quadratic family from part 5 .

