
Dynamical Systems (MATH 3410)

Lab 4 - Feigenbaum’s Constant

This lab is based on Experiment 10.4 from the textbook (p.128).

Using the orbit diagram, we have discovered that the quadratic family Qc(x) = x2 + c
undergoes a sequence of period-doubling bifurcations as the parameter c decreases. Moreover,
under magnifications the parts of the orbit diagram look very similar. In this lab, we will
show that these period-doubling bifurcations indeed occur at the same rate.

We have found that the quadratic family has the unique critical point x0 = 0. You will need
to find c-values at which the critical point 0 lies on an attracting cycle of the prime period
2n for n = 0, 1, . . . , 6.

1. For n = 0 and n = 1, we have derived the formulas for fixed points and 2-cycles of
Qc(x) = x2 + c (check section 6.1 if you forgot), so c-values c0 and c1 can we found exactly.
Find them by assuming that x0 = 0 is an attracting fixed point (lies on an attracting 2-cycle,
respectively).

2. For n ≥ 2, you will have to find cn approximately, accurate to 7 decimal places.

Suggested procedure:

(a) Use program Full orbit diagram.nb to get the first approximation of c-values. Change
the value of IterSkip to 0 to show the full orbit behavior, not just asymptotic behavior. Also
change the value of NewIter to 200 to get more accurate picture. You will notice that at
certain values of c the diagram contains only 20 = 1, 21 = 2, 22 = 4, . . . , 26 = 64 points, and
one of these point must fall precisely on c-axis. Estimate the values of these c by zooming
in, if necessarily. Recall that you can zoom by changing “PlotRange” values in “ListPlot”
command. You must be able to approximate c-values up to 2 − 3 decimal points.

(b) After you get your rough estimate of cn, use program Orbit.nb to improve the accuracy
of the results up to 7 decimal places. Compute the orbit of the critical point 0 under the
function x2 + cn, where cn is your approximation from the part (a). First, make sure the
orbit looks like a 2n cycle with one of the values very close to 0. If it does not, go back and
recheck your values from the part (a). I suggest computing a large enough power of 2 (e.g.
256) of points on the orbit, so the value that is close to 0 will be the last one and easy to
notice. Now change the value of cn in the definition of the function by small increments to
get the point on the orbit even closer to zero. Proceed until you get at least 7 decimal places
of cn.

Notes:

• You may use your own algorithm and/or your own program to estimate c-values.

• It may take a long time to compute all c-values. You may work in groups and divide
the workload.



• A single mistake in one of the c-values will ruin the final result. I highly recommend
to compare your or your group values with somebody else’s.

3. Record your data in the form of the table: enter n = 0, 1, . . . , 6 in the first column and
write down your exact or approximate values c0, c1, . . . , c6 in the second column.

4. Now compute the ratios of the distances between c-values, i.e.

f0 =
c0 − c1
c1 − c2

, f1 =
c1 − c2
c2 − c3

, . . . , f4 =
c4 − c5
c5 − c6

.

Make sure to keep at least 7 decimal places. Present the values in the form of a table.

5. Do you notice any convergence? Estimate the value of the limit. This number is called
Feigenbaum’s constant.

6. Now do all of the above for the logistic function family Fc(x) = cx(1 − x) and its only
critical point x0 = 1/2. Note that since we don’t have a formula for a 2-cycle of this family,
you will need to estimate c1 as well.

Compare the value of the limit of fn’s with the result for quadratic family from part 5.


